Type

Data source

Date

Thumbnail

Search results

2 records were found.

After the accidents occurred during the first decade of this millennium, such as the World Trade Center (2001), London (2005) and Madrid (2004), special attention was given to the study of robust structures subjected to different accidental loads. The World Trade Center attack highlighted troublesome weakness in connections, which exhibited poor performance caused by brittle failure. Structural details played a very significant behavioural role when the structure is subjected to impulsive loads [1]. Concerning the behaviour of steel joint, the literature presents several studies on steel connections under both static and cyclic loads [2, 3]; many results of these studies have contributed for improving the current standards, such as the Eurocode 3, part 1-8 [4]. However, only scarce information exists concerning the behaviour of these joints directly loaded by higher loading rates [5]. This paper is devoted to the report of an experimental programme on steel joints under impact loading, in particular to the assessment of T-stub response under tension. The T-stub is used to evaluate the behaviour of the tensile components that are responsible for the deformability of the joint, such as the end plate in bending. Firstly, the paper describes the features of an experimental system developed at the University of Coimbra, to apply high rates of loading; then, it presents the experimental campaign and the corresponding results. The test apparatus is defined by a rigid reaction frame fixed to a reaction slab and connected to a rigid “flying beam” (HEM 340, S355J2); the impact force is applied in this beam through a pneumatic driven cylinder ( = 125 mm). This “flying beam” consists in a second class lever pivot located at the opposite end of the cylinder location, and the tested specimen is subjected to the dynamic force at the middle of this beam. The pneumatic cylinder was designed to work with a maximum operating pressure of 30 MPa. During the impact tests, force, displacements, accelerations and strains are measured. Because this type of tests occurs in a very short time intervals (hundredths of a second), specific equipment with large sample rate are used. The experimental programme includes two impact tests on welded T-stubs: i) test T-10-D120-160 - rapidly applied loading of 120 Bar [12 MPa], followed by 160 Bar [16 MPa]; and ii) test T-10-D160 - rapidly applied loading of a single impact equal to 160 Bar [16 MPa]. The results of these tests are compared against reference quasi-static tests [6]. The T-stub geometry is defined by two plates, the flange and the web, both with 10 mm of thickness and welded by means of a continuous 45º fillet. The flange is bolted through two bolts M20, grade 8.8 fully threaded.
The work presented in this paper is part of an ongoing research project at the University of Coimbra IMPACTFIRE PTDC/ECM/110807/2009, which the main focus is the characterization of the behaviour of bolted steel connections subjected to accidental loads, such as impact and fire. Detailed description of the experimental parts developed, designed and fabricated at University of Coimbra, to carry out tests under high rates of loading is presented. This experimental part is operated by high pressure nitrogen comprising three main components: pneumatic reservoir, pneumatic cylinder and a rapidly opening valve, which allows the instantaneous nitrogen flow from the reservoir to the cylinder. Furthermore, the data acquisition system, the methodology for analysis of the results and the results of preliminary tests are also reported.