Type

Data source

Date

Thumbnail

Search results

2 records were found.

We investigated the occurrence, diversity and molecular epidemiology of genes coding for acquired AmpC β-lactamases (qAmpC) among clinical isolates of Enterobacteriaceae lacking inducible chromosomal AmpCs in Portugal. A total of 675 isolates non-susceptible to broad-spectrum cephalosporins obtained from four hospitals and three community laboratories during a 7-year period (2002-2008) were analysed. The presence of genes coding for qAmpC was investigated by phenotypic criteria, polymerase chain reaction (PCR) and sequencing. Bacterial identification, antibiotic susceptibility testing, conjugation assays and clonal analysis were performed by standard procedures. The presence of bla qAmpC genes was detected in 50 % (50/100; 41 Klebsiella pneumoniae, 5 Escherichia coli, 4 Klebsiella oxytoca) of the presumptive qAmpC producers. DHA-1, detected in those species, was the most prevalent qAmpC (94 %, 47/50), being identified since 2003 and throughout the studied period in different institutions. Despite the high clonal diversity observed, three DHA-1-producing Klebsiella spp. clones were more frequently identified. CMY-2 (6 %, 3/50) was observed in B1-E. coli clones. Conjugative transfer was only observed in one (2 %) CMY-2-producing isolate. Most qAmpC producers (94 %, 47/50) co-expressed SHV-type and/or OXA-1 or CTX-M-32 extended-spectrum β-lactamases (ESBLs). To the authors' knowledge, this is the first description of the molecular epidemiology and the long-term dissemination of qAmpC-producing Enterobacteriaceae in Portuguese clinical settings, highlighting an evolution towards a more complex epidemiological situation regarding cephalosporin resistance in Portugal.
The spread of multidrug-resistant (MDR) Klebsiella pneumoniae in the nosocomial setting represents a big challenge to infection control teams. We have recently developed a simple spectroscopic-based method with excellent accuracy, turnaround time and cost-effectiveness (Rodrigues et al. mSystems 2020) for bacterial typing. Here, we applied our method in a real clinical context to support early identification of an outbreak involving KPC-3-producing K. pneumoniae ST147 isolates. Our results further support that attenuated total reflectance Fourier transform infrared (FT-IR) spectroscopy can provide enough information to support early and adequate infection control measures and therapeutic choices in the context of nosocomial outbreaks and hospital surveillance.