Type

Data source

Date

Thumbnail

Search results

5 records were found.

Cistus ladanifer has a well-defined taxonomic identity. 2,2,6-trimethylcyclohexanone may be an authenticity and taxonomic marker. Its traits and applications make it a possible economic resource fitted for Mediterranean areas. Cistus ladanifer is a dominant shrub species endemic to the western Mediterranean region. Due to its dominant nature and its potential ecological, aromatic or pharmacological applications, C. ladanifer has been the object of numerous studies. In this review current knowledge on different aspects of this species is summarized, from its taxonomy to its chemical characterisation or its competitive traits. There are no doubts about the taxonomic entity of C. ladanifer, although the recognition of infraspecific taxa deserves more attention. Given that the fragrant exudate of C. ladanifer holds a very specific composition, one species specific carotenoid, 2,2,6-trimethylcyclohexanone, derivative is proposed as an authenticity marker for uses of C. ladanifer in pharmacological or aromatic industries. Evidence is also gathered on the extreme adaptation of C. ladanifer to stressful conditions in the Mediterranean region, such as the ability to survive in low hydric and high solar exposition conditions, presistence in poor and contaminated soils, and growth inhibition of several other plants through the release of allelochemicals. Thus, the finding of potential applications for this plant may contribute to enhance the economic dimension of derelict lands, such as mine tailings or poor agricultural Mediterranean areas.
Obligate coastline taxa generally occupy very limited areas, especially when there is a close affinity with a specific coast type. Climate change can be a meaningful threat for them, reducing suitable habitat or forcing migration events. Cistus ladanifer subsp. sulcatus is an endemic plant of Portugal, known to occur only in the top of its south-western coast’s prominent cliffs. In spite of being included in the annexes II and IV of the European Habitats Directive of Natura 2000 Network, this taxon is still understudied, especially regarding the effects of climate change on its distribution. To overcome such gap, Maxent was used to model the current distribution of C. ladanifer subsp. sulcatus and project its future distribution considering different General Circulation Models, periods (2050 and 2070) and Representation Concentration Pathways (4.5 and 8.5). The results suggested an extensive range contraction in the future, and extinction is a possible scenario. The proximity to littoral cliffs is crucial for this plant’s occurrence, but these formations are irregularly distributed along the coast, hindering range expansions, further inhibited by a small dispersal capacity. Cistus ladanifer subsp. sulcatus will probably remain confined to south-western Portugal in the future, where it will continue to face relevant threats like human activity, reinforcing the need for its conservation.
Climate change’s huge impact on Mediterranean species’ habitat suitability and spatial and temporal distribution in the coming decades is expected. The present work aimed to reconstruct rockrose (Cistus ladanifer L.) historical and future spatial distribution, a typically Mediterranean species with abundant occurrence in North Africa, Iberian Peninsula, and Southern France. The R ensemble modeling approach was made using the biomod2 package to assess changes in the spatial distribution of the species in the Last Interglacial (LIG), the Last Glacial Maximum (LGM), and the Middle Holocene (MH), in the present, and in the future (for the years 2050 and 2070), considering two Representative Concentration Pathways (RCP 4.5 and RCP 8.5). The current species potential distribution was modeled using 2,833 occurrences, six bioclimatic variables, and four algorithms, Generalized Linear Model (GLM), MaxEnt, Multivariate Adaptive Regression Splines (MARS), and Artificial Neural Networks (ANN). Two global climate models (GCMs), CCSM4 and MRI-CGCM3, were used to forecast past and future suitability. The potential area of occurrence of the species is equal to 15.8 and 14.1% of the study area for current and LIG conditions, while it decreased to 3.8% in the LGM. The species’ presence diaminished more than half in the RCP 4.5 (to 6.8% in 2050 and 7% in 2070), and a too low figure (2.2%) in the worst-case scenario (RCP 8.5) for 2070. The results suggested that the current climatic conditions are the most suitable for the species’ occurrence and that future changes in environmental conditions may lead to the loss of suitable habitats, especially in the worst-case scenario. The information unfolded by this study will help to understand future predictable desertification in the Mediterranean region and to help policymakers to implement possible measures for biodiversity maintenance and desertification avoidance.
Main conclusion: The combination of genotypic selection, targeted and improved cultivation, and processing techniques for specific applications gives C. ladanifer the potential to be used as a valuable resource in Mediterranean areas with poor agronomic advantages. Cistus ladanifer (rockrose) is a perennial shrub, well adapted to the Mediterranean climate and possibly to upcoming environmental changes. As a sequence to a thorough review on taxonomic, morphological, chemical and competitive aspects of C. ladanifer, the research team focuses here on the economic potential of C. ladanifer: from production to applications, highlighting also known biological activities of extracts and their compounds. The use of this natural resource may be a viable solution for poor and contaminated soils with no need for large agricultural techniques, because this species is highly resistant to pests, diseases and extreme environmental factors. In addition, this species reveals interesting aptitudes that can be applied to food, pharmaceutical, phytochemical and biofuel industries. The final synthesis highlights research lines toward the exploitation of this neglected resource, such as selection of plant lines for specific applications and development of agronomic and processing techniques.
Key message: Slash and burn practices affect tropical forests. Our results showed strong introgression between Inga ingoides and Inga edulis in the species contact area Interspecific hybridization could be sought to improve yield or tolerance to flooding and further increase the economic potential of the poorly drained Amazonian soils and minimize deforestation. Context: Inga species are important components of tropical American forests, as well as a local food source. Little is known about the genetic structure of these species; in particular the amount of introgression among species remains unknown. Aims: We assessed the degree of genetic divergence and introgression among populations of I. ingoides (Rich.) Willd. and I. edulis Mart. (Fabaceae) from three Peruvian Amazon tributary rivers. Methods: Using microsatellite markers we determined the genetic structure of populations using an analysis ofmolecular variance and a Bayesian analysis of population structure in areas affected by seasonal river fluctuations and in ‘terra firme’ forests. Results: Overall genetic differentiation was weak. The degree of genetic variation was similar in the two species. A putatively strong introgression was detected between the two species and an intense gene flow was identified among populations. This indicates that an intense gene flow had happened in the past, leading also to a small differentiation among populations within species. Conclusion: Selection of natural hybrids or artificial hybridization between I. edulis and I. ingoides could be applied to improve legume size and yield in the later species, while maintaining tolerance to flooding. Improved I. ingoides could be used in multipurpose agroforestry on open areas along the rivers, instead of using the usual slash and burn practice to create inland open areas.