Type

Data source

Date

Thumbnail

Search results

5 records were found.

Cardiometabolic diseases are one of the primary causes of mortality and morbidity worldwide and sedentary lifestyles are contributing factors to these pathologies. Physical exercise has been recognized as an important tool in the prevention and treatment of these diseases. However, there are still some doubts about the efficacy of certain type of physical exercise programs for older participants. The main goal of this study is to assess the impact of different aquatic-based physical exercise programs on risk markers of cardiometabolic diseases in older people. The study group will consist of non-institutionalized individuals, within the age group of 65 or older. The sample will be randomly divided into four groups, three experimental groups (EG) and one control group (CG). Participants fromthe EGs will be exposed to three physical aquatic-based exercise programs for a period of 28 weeks (continuous aerobic, interval aerobic and combined). The evaluated parameters include anthropometry, physical functions, mental health, cognitive function, carotid arteries intima-media thickness, heart rate variability and biochemical markers. The results will allow an interpretation of the impact of different aquatic-based physical exercise programs on cardiometabolic diseases markers and can also be used as a tool for professionals to prescribe adequate and more efficient physical exercise programs.
The elderly population is constantly growing worldwide. One of the characteristics of aging is the decrease in functional fitness and cognitive function, leading to the appearance of cardiometabolic disorders. Methodology: The aim of this study is to verify the association between aerobic capacity, handgrip strength and cognition with risk markers for cardiometabolic diseases and mental health in community dwelling elderly. The study consists of a cross-sectional analysis of baseline data from a 28-week randomized controlled trial, with a sample of 102 participants (mean age 72.32 ± 5.25 years). The sample was evaluated for anthropometry, functional fitness, heart rate variability, carotid artery intima and mean thickness (IMT), cognitive function, mental health and biochemical markers. Correlations were evaluated using Pearson's statistical analysis and interpreted according to Cohen's (1988). Results: Statistically significant correlations were found between aerobic capacity (2m-ST) and markers of functional, cardiovascular, biochemical, cognitive function and mental health fitness. Handgrip strength (HG) was statistically significantly correlated with anthropometric measurements, various indicators of functional fitness, biochemical markers, cognitive function, and mental health variables. Finally, cognitive function (MMSE) was correlated with anthropometric measures, functional fitness, cardiovascular and biochemical markers, and mental health. These data suggest that aerobic capacity, handgrip strength and cognitive function may be hypothetically associated with cardiovascular disease risk markers.
Scientific evidence has shown that physical exercise is an effective way of improving several cardiovascular disease markers. However, few studies have tested its effectiveness whenperformed in aquatic environments. The purpose of this study was to test the impact of different aquatic exercise programs on the intima-media thickness of carotid arteries (IMT) and hemodynamic and biochemical markers of cardiovascular diseases in community-dwelling older persons. A total of 102 participants were randomly allocated into four groups: an aerobic exercise group (AerG) (n = 25, 71.44 ± 4.84 years); an aerobic interval group (IntG) (n = 28, 72.64 ± 5.22 years); a combined group (ComG) (n = 29, 71.90 ± 5.67 years); and a control group (CG) (n = 20, 73.60 ± 5.25 years). The AerG, IntG, and ComG participants took part in three different aquatic exercise programs for 28 weeks. The CG participants maintained their usual routines. All participants were evaluated for IMT, blood pressure, lipid profile, and MCP-1 and MIP-1α chemokines, pre- and post-intervention. Significant differences were found in the AerG for diastolic diameter (DD), in the IntG for peak systolic velocity (PSV), and in the ComG for DD and end-diastolic velocity (EDV). Regarding blood pressure, significant differences were found in AerG for systolic blood pressure (SBP) and diastolic blood pressure (DBP); in IntG for DBP; and in ComG for SBP, DBP, and heart rate (HR). Significant differences were found in the AerG and IntG for glucose (GLU). Lower plasma levels of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein (MIP-1α) were found in the AerG and in the ComG for MCP-1 after the intervention. Aquatic physical exercise appears to improve cardiovascular health, regardless of the type of the program adopted. Aerobic programs (combined and continuous aerobic exercises) seemed to have a more beneficial effect in reducing important cardiovascular risk markers.
Evidence shows that physical exercise is important in maintaining an efficient immune system during ageing. However, there are few studies that test the impact of aquatic exercise programs on the immune system. This study aims to analyze the impact of different physical exercise programs in aquatic environment on the systemic hematological and inflammatory markers of community dwelling elderly. One hundred and two elderly were randomly allocated into four groups: a continuous aerobic exercise group (AerG) (n = 25, 71.44 ± 4.84 years); an interval aerobic exercise group (IntG) (n = 28, 72.64 ± 5.22 years); a combined exercise group (ComG) (n = 29, 71.90 ± 5.67 years); a control group (CG) (n = 20, 73.60 ± 5.25 years). The AerG, IntG and ComG participants took part in three different aquatic exercise programs over a 28- weeks period. The CG participants maintained their usual routines during the same time period. Blood samples were collected from all participants in order to access hematologic indicators, by means of cell count, and the inflammatory profile by ELISA. After 28 weeks, significant differences were found for several hematologic variables in the AerG, IntG and ComG with increases in mean corpuscular hemoglobulin (MCH), mean corpuscular hemoglobulin concentration (MCHC), and hemoglobulin (Hb). Decreases in TNF-α levels were found for all exercising groups. An increase in IL-10 levels, granulocytes to lymphocytes ratio (GLR) and a decrease in the TNF-α/IL 10 ratio, were found for the IntG. For the ComG decreases were also found for the TNF-α, IL-1ß/IL-1ra ratios. The present study suggests that aquatic exercise programs were able to improve the inflammatory profile of the participants. Those in the exercise intervention groups showed a shift towards lower pro-inflammatory levels while the non-exercising group showed the opposite behaviour. The IntG and the ComG aquatic exercise programs appeared to be more effective than the AerG program in decreasing chronic low-grade inflammation by mediating the production of higher levels of anti-inflammatory cytokines. However, the differences found between the exercising groups were small and may not have clinical significance.
Background: Sedentary behavior has been considered an independent risk factor to health. The aim of this systematic review and meta-analysis was to examine associations between objectively measured sedentary time and physical fitness components in healthy adults. Methods: Four electronic databases (Web of Science, Scopus, Pubmed and Sport Discus) were searched (up to 20 September 2020) to retrieve studies on healthy adults which used observational, cohort and cross-sectional designs. Studies were included if sedentary time was measured objectively and examined associations with the health- or skill-related attributes of physical fitness (e.g., muscular strength, cardiorespiratory fitness, balance). After applying additional search criteria, 21 papers (11,101 participants) were selected from an initial pool of 5192 identified papers. Results: Significant negative associations were found between total sedentary time with cardiorespiratory fitness (r = -0.164, 95%CI: -0.240, -0.086, p < 0.001), muscular strength (r = -0.147, 95%CI: -0.266, -0.024, p = 0.020) and balance (r = -0.133, 95%CI: -0.255, -0.006, p = 0.040). Conclusions: The evidence found suggests that sedentary time can be associated with poor physical fitness in adults (i.e., muscular strength, cardiorespiratory fitness and balance), so strategies should be created to encourage behavioral changes.