Type

Data source

Date

Thumbnail

Search results

2 records were found.

The concept of the Internet of Things (IoT) in agriculture is associated with the use of high-tech devices such as robots and sensors that are interconnected to assess or monitor conditions on a particular plot of land and then deploy the various factors of production such as seeds, fertilizer, water, etc., accordingly. Vine trunk detection can help create an accurate map of the vineyard that the agricultural robot can rely on to safely navigate and perform a variety of agricultural tasks such as harvesting, pruning, etc. In this work, the state-of-the-art single-shot multibox detector (SSD) with MobileDet Edge TPU and MobileNet Edge TPU models as the backbone was used to detect the tree trunks in the vineyard. Compared to the SSD with MobileNet-V1, MobileNet-V2, and MobileDet as backbone, the SSD with MobileNet Edge TPU was more accurate in inference on the Raspberrypi, with almost the same inference time on the TPU. The SSD with MobileDet Edge TPU achieved the second-best accurate model. Additionally, this work examines the effects of some features, including the size of the input model, the quantity of training data, and the diversity of the training dataset. Increasing the size of the input model and the training dataset increased the performance of the model.
Within the scope of precision agriculture, many applications have been developed to support decision making and yield enhancement. Fruit detection has attracted considerable attention from researchers, and it can be used offline. In contrast, some applications, such as robot vision in orchards, require computer vision models to run on edge devices while performing inferences at high speed. In this area, most modern applications use an integrated graphics processing unit (GPU). In this work, we propose the use of a tensor processing unit (TPU) accelerator with a Raspberry Pi target device and the state-of-the-art, lightweight, and hardware-aware MobileDet detector model. Our contribution is the extension of the possibilities of using accelerators (the TPU) for edge devices in precision agriculture. The proposed method was evaluated using a novel dataset of peaches with three cultivars, which will be made available for further studies. The model achieved an average precision (AP) of 88.2% and a performance of 19.84 frames per second (FPS) at an image size of 640 × 480. The results obtained show that the TPU accelerator can be an excellent alternative for processing on the edge in precision agriculture.