Type

Data source

Date

Thumbnail

Search results

4 records were found.

POLCA (i.e. Paired-cell Overlapping Loops of Cards with Authorization) is a card-based decision support system for production control, developed to support the adoption of Quick Response Manufacturing. Two variants of POLCA have been proposed in the literature to improve POLCA performance: Load Based POLCA and Generic POLCA. In this paper, we combine these two variants into a single production control system and analyse its performance for different backlog-sequencing rules. The results of a simulation study carried out for a make-to-order flow shop, support the strategy of combining these two POLCA variants and show that capacity-slack backlog sequencing based on corrected aggregate load have the potential for improving performance.
Lot splitting is an important approach for shops that compete on short delivery times. Similarly, such shops can benefit from load-limiting order release mechanisms that balance workloads and regulate throughput times. Yet few studies have examined the combined effect of lot splitting and load-limiting order release. We use simulation to assess the combined effect of lot splitting and Paired-cell Overlapping Loops of Cards with Authorization (POLCA), an important load-limiting order release mechanism in the context of time-based competition. The experimental design includes different lot sizes, lot transfer policies, and POLCA quanta, i.e. the limit on the size of jobs represented by a single POLCA card. Lot splitting improves performance if lots can proceed independently as this ensures the quick replenishment of queues at downstream stations. However, we find that enforcing the synchronization of all lots that make up a job at every routing step leads to a deterioration in performance. This extends previous research, which appears to have overemphasized the positive effects of lot splitting. Meanwhile, although POLCA cards were originally used to represent lots, we demonstrate that using cards to represent a certain amount of workload can improve percentage tardy performance. This may also have resonance with other card-based solutions, including kanban.
“This is a pre-print of an article published in Journal of Intelligent Manufacturing. The final authenticated version is available online at Springer http://dx.doi.org/10.1007/s10845-018-1402-2
Production control in make-to-order must address the companies’ need for short delivery times and on-time deliveries. Several production control systems may be used to meet these needs. This paper presents a simulation study to evaluate the delivery performance of the TKS, GKS and POLCA production control systems, in the context of a make-to-order flexible flow shop. Since TKS is used for make-to-stock manufacturing, an adaptation of it is made to use in make-to-order. Results of a simulation study show that the adapted TKS outperforms POLCA, but performs worse than GKS. The study is a contribution for the alignment of production control theory to the industrial practice.