Type

Data source

Date

Thumbnail

Search results

6 records were found.

“Copyright © [2009] IEEE. Reprinted from International Conference on Parallel Processing Workshops ICPPW '09.ISSN:1530-2016. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”
Vehicular Delay-Tolerant Network (VDTN) is a new disruptive network architecture where vehicles act as the communication infrastructure. VDTN follows a layered architecture based on control and data planes separation, and positioning the bundle layer under the network layer. VDTN furnishes low-cost asynchronous communications coping with intermittent and sparse connectivity, variable delays and even no end-to-end connection. This paper presents a VDTN prototype (testbed) proposal, which implements and validates the VDTN layered architecture considering the proposed out-of-band signaling. The main goals of the prototype are emulation, demonstration, performance evaluation, and diagnose of protocol stacks and services, proving the applicability of VDTNs over a wide range of environments.
Carcinogenesis induced by high-risk human papillomavirus (HPV) involves inflammatory phenomena, partially mediated by cyclooxigenase-2. In pre-clinical models of HPV-induced cancer, cyclooxygenase-2 inhibitors have shown significant efficacy, but also considerable toxicity. This study addresses the chemopreventive effect and hepatic toxicity of a specific cyclooxigensase-2 inhibitor, parecoxib, in HPV16-transgenic mice. Forty-three 20 weeks-old female mice were divided into four groups: I (HPV16-/-, n = 10, parecoxib-treated); II (HPV16-/-n = 11, untreated); III (HPV16+/-, n = 11, parecoxib-treated) and IV (HPV16+/-, n = 11, untreated). Parecoxib (5.0 mg/kg once daily) or vehicle was administered intraperitoneally for 22 consecutive days. Skin lesions were classified histologically. Toxicological endpoints included genotoxic parameters, hepatic oxidative stress, transaminases and histology. Parecoxib completely prevented the onset of epidermal dysplasia in HPV16+/- treated animals (0% versus 64% in HPV16+/- untreated, p = 0.027). Parecoxib decreases lipid peroxidation (LPO) and superoxide dismutase (SOD) activity and increases the GSH:GSSG ratio in HPV16+/- treated animals meaning that oxidative stress is lower. Parecoxib increased genotoxic stress parameters in wild-type and HPV16-transgenic mice, but didn't modify histological or biochemical hepatic parameters. These results indicate that parecoxib has chemopreventive effects against HPV16-induced lesions while maintaining an acceptable toxicological profile in this model.