Type

Data source

Date

Thumbnail

Search results

2 records were found.

In line with the context of Industry 4.0, forestry, and in particular the entire ecosystem around it, also needs digitalization solutions in order to allow better interaction between all agents that work and live from the forest. It is important for a better management of forest resources allowing productivity gains, more sustainability and resilience. One of the agents that can benefit, but also contribute to better forestry, are machine producers.With digitalization, the machinery is now equipped with new and better sensors that can be used not only for machine operations but also for forest management, through LiDAR (Light Detection And Ranging) or RGB (Red, Green, Blue) cameras for example. On the other hand, there are new needs for predictive maintenance or solutions for remote assistance of machines operating in the forest, typically in isolated areas with great limitations in access to communications. Thinking about these technological challenges, this work seeks to provide answers with communication solutions in forest machines, enabling the digitalization of functionalities, also allowing remote access to machine controllers in order to provide them with connectivity in an IIoT (Industrial Internet of Things) scenarios. New hardware modules designed in partnership and according to the prerequisites of a forest machine manufacturer are presented. These modules are a step towards digitizing the machines and opening up the scalability of new requirements, as well as remote access through additional gateways. The results already obtained in real scenarios show that these modules can be a concrete solution for the current and emerging needs of industrial machine manufacturers.
This paper presents the initial developments of new hardware devices targeted for CAN (Controller Area Network) bus communications in forest machines. CAN bus is a widely used protocol for communications in the automobile area. It is also applied in industrial vehicles and machines due to its robustness, simplicity, and operating flexibility. It is ideal for forestry machinery producers who need to couple their equipment to a machine that allows the transportation industry to recognize the importance of standardizing communications between tools and machines. One of the problems that producers sometimes face is a lack of flexibility in commercialized hardware modules; for example, in interfaces for sensors and actuators that guarantee scalability depending on the new functionalities required. The hardware device presented in this work is designed to overcome these limitations and provide the flexibility to standardize communications while allowing scalability in the development of new products and features. The work is being developed within the scope of the research project “SMARTCUT—Remote Diagnosis, Maintenance and Simulators for Operation Training and Maintenance of Forest Machines”, to incorporate innovative technologies in forest machines produced by the CUTPLANT S.A. It consists of an experimental system based on the PIC18F26K83 microcontroller to form a CAN node to transmit and receive digital and analog messages via CAN bus, tested and validated by the communication between different nodes. The main contribution of the paper focuses on the presentation of the development of new CAN bus electronic control units designed to enable remote communication between sensors and actuators, and the main controller of forest machines.