Type

Data source

Date

Thumbnail

Search results

2 records were found.

Evaporation of rainfall intercepted by tree canopies is usually an important part of the overall water balance of forested catchments and there have been many studies dedicated to measuring and modelling rainfall interception loss. These studies have mainly been conducted in dense forests; there have been few studies on the very sparse forests which are common in dry and semi-arid areas. Water resources are scarce in these areas making sparse forests particularly important. Methods for modelling interception loss are thus required to support sustainable water management in those areas. In very sparse forests, trees occur as widely spaced individuals rather than as a continuous forest canopy. We therefore suggest that interception loss for this vegetation type can be more adequately modelled if the overall forest evaporation is derived by scaling up the evaporation from individual trees. The evaporation rate for a single tree can be estimated using a simple Dalton-type diffusion equation for water vapour as long as its surface temperature is known. From theory, this temperature is shown to be dependent upon the available energy and windspeed. However, the surface temperature of a fully saturated tree crown, under rainy conditions, should approach the wet bulb temperature as the radiative energy input to the tree reduces to zero. This was experimentally confirmed from measurements of the radiation balance and surface temperature of an isolated tree crown. Thus, evaporation of intercepted rainfall can be estimated using an equation which only requires knowledge of the air dry and wet bulb temperatures and of the bulk tree-crown aerodynamic conductance. This was taken as the basis of a new approach for modelling interception loss from savanna-type woodland, i.e. by combining the Dalton-type equation with the Gash’s analytical model to estimate interception loss from isolated trees. This modelling approach was tested using data from two Mediterranean savanna-type oak woodlands in southern Portugal. For both sites, simulated interception loss agreed well with the observations indicating the adequacy of this new methodology for modelling interception loss by isolated trees in savanna-type ecosystems. Furthermore, the proposed approach is physically based and requires only a limited amount of data. Interception loss for the entire forest can be estimated by scaling up the evaporation from individual trees accounting for the number of trees per unit area.
In closed canopy forests the energy absorbed by the trees can be adequately estimated solely from the vertical radiation fluxes. However, in isolated or widely spaced trees this approach is no longer valid and radiation fluxes in all directions must be accounted for. An adequate estimate of the tree available energy is critical to model and calculate both interception losses and transpiration. Within a study where interception loss in a sparse evergreen oak woodland (montado) of Southern Portugal is evaluated and mod¬elled, the net amount of radiant energy absorbed by an isolated holm oak tree (Q) was measured under different radiation conditions. The measuring and calculating proce¬dure was based on the integration of the flux density of net radiation (Rn) at different points of a cylindrical surface (S) enclosing the tree crown. A set of 4 net radiome¬ters were used: one at a fixed position, on the top of the crown, and the remaining 3 mounted on a standing structure that could be moved around the tree to measure Rn fluxes through the inferior and lateral sides. Measurements of Q were made for 8 dif¬ferent days, during the first 3 months of 2006. Night time measurements of Rn were also done, but with the net radiometers at fixed positions around the tree. The meteoro¬logical conditions during the measurements included clear sky and cloudy days, some of which with light rain. Net radiation at the top of the crown accounted for about 72 % of the total energy absorbed by the tree, and this is reflected by the good linear fit between Q and Rn above the crown. Meteorological conditions seem to have some influence on this relationship, as suggested by the differences on the adjusted linear models when total, clear sky, cloudy or rainy data sets were used. The occurrence of rain tends to cause a slight increase in Q in comparison to dry conditions, for identical levels of Rn. Q also shows a strong linear response to solar radiation (Rs), given the dependence of net radiation upon short wave radiation. The same happens with the component of Q received by the top crown surface. However, energy absorbed lat¬erally is much less dependent on Rs, and the inferior component of Q is completely independent of solar radiation. Under conditions when rainfall interception is most likely to occur, i.e. cloudy/rainy days, the daily time-course of Q follows closely those of Rs and Rn, with a maximum of only 75 W m-2 (expressed per unit of leaf area). Similar maximum daily values were observed in other studies with different species but under similar weather conditions. During the night, net radiation should not have a significant spatial variability and Rn around the canopy should be relatively homo¬geneous. Accordingly, night time estimates of Q were obtained from measurements of Rn at fixed positions, which were considered representative of the Rn fluxes around the tree.