Type
conferenceObject
Publisher
Identifier
SOARES, Vasco N. G. J. [et al.] - Exploiting node localization for performance improvement of vehicular delay-tolerant networks. In International Conference on Communications, Cidade do Cabo, 23-27 Maio 2010. [S. l.] : IEEE, 2010. p. 1-5
1550-3607
Title
Exploiting node localization for performance improvement of vehicular delay-tolerant networks
Subject
Vehicular delay-tolerant networks
Signaling
Localization information
Contact duration prediction
Scheduling policies
Performance assessment
Signaling
Localization information
Contact duration prediction
Scheduling policies
Performance assessment
Date
2011-02-23T17:50:15Z
2011-02-23T17:50:15Z
2010-05-23
2011-02-23T17:50:15Z
2010-05-23
Description
“Copyright © [2010] IEEE. Reprinted from IEEE International Conference on Communications (IEEE ICC 2010) - General Symposium on Selected Areas in Communications (ICC'10 SAS).ISSN:1550-3607. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”
Vehicular Delay-Tolerant Networks (VDTNs) are characterized by high node mobility, intermittent connectivity, and short contact durations. Such factors cause incomplete transmissions and the waste of link capacity. To address these issues, this paper explores the use of node localization in VDTNs. The exchange of signaling information related to nodes’ real-time location, current trajectory, velocity, and transmit range allows a Contact Prediction Algorithm to estimate contact durations. This information can be used in conjunction with additional signaling information (e.g. link data rate), to determine the maximum number of bytes that can be transmitted during contact opportunities. A Contact Duration Scheduling Policy can use this information to prevent incomplete transmissions, while increasing the number of successfully relayed bundles and improving data link utilization. Through a simulation study, we investigate the benefits of introducing the concept of node localization, and evaluate the performance of the proposed Contact Prediction Algorithm and Contact Duration Scheduling Policy. We demonstrate the gains introduced by this approach in comparison with an environment where VDTN nodes have no access to localization information.
Part of this work has been supported by Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU.
Vehicular Delay-Tolerant Networks (VDTNs) are characterized by high node mobility, intermittent connectivity, and short contact durations. Such factors cause incomplete transmissions and the waste of link capacity. To address these issues, this paper explores the use of node localization in VDTNs. The exchange of signaling information related to nodes’ real-time location, current trajectory, velocity, and transmit range allows a Contact Prediction Algorithm to estimate contact durations. This information can be used in conjunction with additional signaling information (e.g. link data rate), to determine the maximum number of bytes that can be transmitted during contact opportunities. A Contact Duration Scheduling Policy can use this information to prevent incomplete transmissions, while increasing the number of successfully relayed bundles and improving data link utilization. Through a simulation study, we investigate the benefits of introducing the concept of node localization, and evaluate the performance of the proposed Contact Prediction Algorithm and Contact Duration Scheduling Policy. We demonstrate the gains introduced by this approach in comparison with an environment where VDTN nodes have no access to localization information.
Part of this work has been supported by Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU.
Access restrictions
openAccess
Language
eng
Comments